VIGYAN SIKSHAK (Vol. - 2 • June 2018)

ANNUAL JOURNAL

٥

ALL INDIA SCIENCE TEACHERS' ASSOCIATION WEST BENGAL

25/1 Chandranath Chatterjee Street Kolkata-700 025 Telephone No. 8 033-2454 8090 Egistration No. 8 S/IL/86866 of 2011-2012 Wesbite 8 www.aista-wb.org

0

+

0

0

2002

NO

VIGYAN SIKSHAK

(Vol. 2 • June 2018)

ANNUAL JOURNAL

OF

ALL INDIA SCIENCE TEACHERS' ASSOCIATION, WEST BENGAL

-: EDITORIAL BOARD :-

:: <u>EDITOR</u> ::

Dr. Debabrata Majumdar

Ex-Principal, Raja Rammohan Roy Mahavidyalaya, Hooghly, W.B. - 712406, E-mail : majumdar.debabrata@gmail.com

-: CONSULTANT EDITOR :-

Dr. Kamal Krishna De

Ex-Principal, David Hare Training College, Kolkata - 700 019. de.kamal@gmail.com

-: MEMBERS OF EDITORIAL BOARD :-

Dr. Satyendranath Giri, President All India Science Teachers' Association, Kolkata, West Bengal, E-mail : sgiri1939@gmail.com

Swami Tattwasarananda, Ph.D, Principal, R. K. Mission Sikshanamandira, Belur Math, Howrah, E-mail : swamitattwasarananda@gmail.com

Dr. Madan Mohan Chel, Ex-Principal, Sammilani Mahavidyalaya, Kolkata - 700 075, E-mail : mathmmc@gmail.com

Dr. Asit Kumar Das, Ex-Dean, Students' Welfare, University of Kalyani, Nadia, W.B., E-mail : asitd09@gmail.com Dr. Satyabachi Sar, Retd. HOD of Mathematics, M.B.B. College, Agartala, Tripura, E-mail : satyabachisar@gmail.com

Dr. Subhash Chandra Bhat, Assistant Professor, Govt. Teachers' Training College, Banipur, 24 Pgs. (N), E-mail : sc_bhat@yahool.co.in

Dr. Subir Kumar Sarkar, Headmaster, Nawabgunj High School, Ichhapur, 24 Pgs. (N), W.B. 'E-mail : subirsarkar@rediffmail.com

Dr. Partha Karmakar, Office-in-Charge, Muragachha Govt. College, Muragachha, Nadia, E-mail : paratha_math72@yahoo.co.in

VIGYAN SIKSHAK

(Bi-lingual, English & Bengali)

A Journal of Science Education

Published by :

Shri Banabihari Patra, General Secretary, All India Science Teachers' Association, West Bengal, 25/1, Chandranath Chatterjee Street, Kolkata - 700 025

Copyright © :

General Secretary, All India Science Teachers' Association, West Bengal, 25/1, Chandranath Chatterjee Street, Kolkata - 700 025

Disclaimer :

Although the editorial board has tried to the best of their abilities to check the articles and / or research papers, the final responsibility of originality, correctness, opinions and views etc. expressed in the articles and / or research papers lie with the authors. The editors and publishers of Vigyan Sikshak are not responsible hazards related to the issues mentioned.

Prince : ₹ 150.00

All correspondence should be addressed to General Secretary, All India Science Teachers' Association, West Bengal, 25/1, Chandranath Chatterjee Street, Kolkata - 700 025

Printed by : NEW BISWABARTA PRESS, Kolkata - 700 019

To be had of :

Registered Office of All India Science Teachers' Association, West Bengal, 25/1, Chandranath Chatterjee Street, Kolkata - 700 025

VIGYAN SIKSHAK

(Vol. 2 • June 2018)

ANNUAL JOURNAL OF

ALL INDIA SCIENCE TEACHERS' ASSOCIATION, WEST BENGAL

সূচীপত্র

>	Editorial	1
>	Communication Basics Today - Susmita Sen	4
>	Disability is not the Barrier to Success - Md. Jamal Uddin	40
>	Prof. Ashima Chatterjee : The 'Tereshkova' in	
	Indian Chemistry – Subhas Bhat	60
>	A Tribute to Richard Phillips Feynman in his	
	Birth Centenary - Rakesh Samanta	-00
>	Conditions on Momenta for Duality and its Limit in the	
	Light of Movion Theory - Dr. Dilip Kumar Modak	54
>	Upper Primary Science Curriculum in WB in the Light	
	of Integration – Kamal Krishna De & Smriti Kantha Bag	85
۶.	Impact of Parental Education on the Achievement in Mathematics	
	of Madhyamik Passed Students in West Bengal – Arup Kundu	85
>	Constructivist Approach in Teaching Life Science - an Innovative	
	Practice in Classroom at School Level - Ujjwal Paul	66
>	A Wonderful Mathematical Concept of Ancient Indians about the Origin	
	of the Universe and the Life on It - Dr. Gopes Kumar Datta	65
>	An Experimental Study of Magnetic Dipole-Dipole Interaction in	
	Earth's Gravitational Field – Surajit Chakrabarti	98
>	Revisiting the problem of banking of the smooth road - Syed Minhaz Hossain	99
>	Electronic Waste - An Emerging Hazard of Digital Age - Amrita Mukherjee	
	& Surjya Sarathi Bhattacharyya	50
>	Organic manure towards Environmental Sustainability - Dr. Sruti Karmakar	59
>	শিক্ষামূলক বিজ্ঞান প্রদর্শনী — সূভাষ চন্দ্র সামন্ত	64
>	চাঁদের সৃষ্টি রহস্য — বিমান বসু	28
>	সংক্ষিপ্ত হকিং চরিত্র — ঋত্বিকা দাস	
>	প্রসঙ্গ সাপ : পরিচিতি, কিছু তথ্য, ভ্রাস্ত ধারণা ও প্রতিবিধান — অশোক কুমার গায়ন	29
-	অন্য নান , নারাগত, কিছু তথ্য, বাও বারণা ও বাতাববান — অনোক কুমার গায়ন	22

Constructivist Apporach in Teaching Life Science – an Innovative Practice in Classroom at School Level Ujjwal Paul*

Now-a-days "Constructivist approach" is widely discussed, praised and accepted by educationists in India and abroad. National Curriculum Framework, 2005 (NCF 2005) Published by NCERT also puts emphasis on this approach to learning.

What is Constructivism?

Hein (1991) defined constructivism as the philosophy of how a person learns by. constructing knowledge from his or her experience. In the process of constructing knowledge, one passes through a series of events such as questioning himself/herself and discovering answers, as well as evaluating those answers. Constructivism works on the philosophy that there is no knowledge independent of the meaning attributed to experience (constructed) by the learning, or community of learners (Fosnot, 1989). Knowledge construction means that students construct their own knowledge by actively participating in the process of learning and seeking to find their own meaning in their experiences. Literally, it can be said that learners construct, find or develop meaning in their subjective experiments, and this result becomes knowledge for them.

According to constructivist, an individual's subjective experience is just as valid as anyone else's and on one has privileged view point (Allus, 2008).

In this millennium constructivist learning has emerged as a forceful approach to teaching and learning. This approach is based on the work done by John Dewey, Maria Montessori, Jean Piaget, Bruner and Lev Vygotsky. It represents a paradigm shift from teaching-learning based on behaviourism to education based on cognitive theory.

There are several types of constructivism such as:-

a) Cognitive constructivism:- It discusses about the cognitive structure of an individual and its developmental process, proposed by Jean Piaget.

b) Social Constructivism:- It accepts that there are two parts of knowledge, individual and society. These two cannot be seen independently and influence each other.

c) Cultural Constructivism:- According to Vygotsky culture is the prime determinant of individual development. All new learning is based on previous learning which includes various concepts of the concerned subjects such as biological concepts or scientific

VIGYAN SIKSHAK (Vol.-2 • June-2018) - 56

page no. 56-67

Constructivist Approach in Teaching Life Science – an Innovative Practice in Classroom at School level

Ujjwal Paul Assistant Professor (WBES) Government College of Education (CTE), Banaipur Email. ujjwalpaulss9@gmail.com

Now-a-days "Constructivist approach" is widely discussed, praised and accepted by educationists in India and abroad. National Curriculum Framework, 2005 (NCF 2005) Published by NCERT also puts emphasis on this approach to learning.

What is Constructivism?

Hein (1991) defined constructivism as the philosophy of how a person learns by constructing knowledge from his or her experience. In the process of constructing knowledge, one passes through a series of events such as questioning himself/herself and discovering answers, as well as evaluating those answers. Constructivism works on the philosophy that there is no knowledge independent of the meaning attributed to experience (constructed) by the learning, or community of learners (Fosnot,1989). Knowledge construction means that students construct their own knowledge by actively participating in the process of learning and seeking to find their own meaning in their experiences. Literally, it can be said that learners construct, find or develop meaning in their subjective experiments, and this result becomes knowledge for them.

According to constructivist, an individual's subjective experience is just as valid as anyone else's and on one has privileged view point (Allus,2008).

In this millennium constructivist learning has emerged as a forceful approach to teaching and learning. This approach is based on the work done by John Dewey, Maria Montessori, Jean Piaget, Bruner and Lev Vygotsky. It represents a paradigm shift from teaching-learning based on behaviourism to education based on cognitive theory.

There are several types of constructivism such as:-

- a) Cognitive constructivism: It discusses about the cognitive structure of an individual and its developmental process, proposed by Jean Piaget.
- **b**) **Social Constructivism:** It accepts that there are two parts of knowledge, individual and society. These two cannot be seen independently and influence each other.
- c) Cultural Constructivism: According to Vygotsky culture is the prime determinant of individual development. All new learning is based on previous learning which includes various concepts of the concerned subjects such as biological concepts or scientific concept. He thought that children construct their own knowledge through 'scaffolding' by the help of MKO (More knowledge others) in their zone of proximal development (ZPD.)
- d) Cybernetic constructivism: Cybernetics of self organization presents another kind of constructivism. This is based on the concept of autopoiesis (self formation) which has formulated by children cell-biologists Humberto Maturana and Francisco Varela (1980, 1987, cited in Ahmed, 2009). An autopoietic system is defined as a network of processes of production (transformation and destruction) of components that

produces the components. Although autopoiesis originally developed to describe biological cells, subsequently it was applied to a variety of disciplines covering physical, cognitive and psychic system.

- e) Constructivist learning Design: The constructivist leaning Design in science and other subject classroom emphasizes the following six important elements
 - 1. Developing a situation: the teacher has to develop the situation for students about the process of their learning.
 - 2. Grouping: the teacher has to select a process for grouping of students and learning materials.
 - 3. Bridging: the teacher has to develop a bridge between what the students already know and what the teacher wants them to learn.
 - 4. Questioning: the teacher should anticipate questions to be asked to the students.
 - 5. Exhibiting: the teacher should encourage students to exhibit a record of their thinking by sharing it with others.
 - 6. The teacher has to solicit reflection of students on their learning i.e. "reflecting".

In a word, a constructivist teacher creates activities and assignments that foster the creation of knowledge by different learning situations.

The principal investigator of Biological science curriculum studies (BSCS), Roger Bybee (cited in Ahmed, 2009), developed an instructional model for constructivist, which is called the 'Five Es' and are indicated as follows:

- 1. **Engage:** The student's first encounter and identity the instructional task.
- 2. **Explore:** Learning get directly involved with the phenomena and materials.
- 3. **Explain:** At this stage explanation is multidirectional.
- 4. **Elaborate:** Students apply their understanding to the world around them, which they had learned in the past.
- 5. **Evaluate:** This is an ongoing diagnostic process.

So, in a constructivist pedagogy learning should take place in authentic and realworld environments that should involve social negotiation and mediation. Context and skills should be made relevant to the learners and related to the learner's prior knowledge. Students should be assessed formatively, serving to inform future learning experience.

In a constructivist science and other subject classroom, learning should be constructivist, active, Reflective, collaborative, Inquiry based and evolving. Here, student's autonomy and initiative are accepted and encouraged. Teacher asks open-ended questions and allows wait time for responses. Students are engaged in dialogue with the teacher and with each other. The class uses raw date, primary sources, and manipulative, physical and interactive materials.

From an example we can explore what kind of teaching-learning situation may occur in a constructivist science classroom:-

Students study astronomy and science in general by using observation of telescopic plates and a computer simulation of the sky to construct and test interpretations of astronomical phenomena. (**Observation**), then relate these analysis to reference materials (**contextualization**) containing what know about astronomical objects.

The teacher initially talks through how he would analyze and interpret examples of such astronomical data (cognitive apprenticeship) then the students form groups to work on

some data <u>(collaboration)</u>, while the teacher coaches and advises them proceed. Then the students develop their own hypotheses and test them against the astronomical data. <u>(Interpretation construction</u>) students analyses the data both within and between the groups, and such argumentation together with background readings exposes them to various ways to interpret the data <u>(Multiple Interpretation</u>).

As they proceed through the course, the students see how basic principles of astronomy, physics and chemistry can be used to make sense of different sets of astronomical data. (<u>Multiple Manifestation</u>)

Preparation of Learning Design through 5E's Model in Life Science Subject:

(according to Revised Anderson and Krathwohl – Bloom's Taxonomy, 2001)

Topic: The cardiovascular system (the normal structure and functioning of the heart, the circulation of blood in the human body, from the heart to the rest of the body and back to the heart)

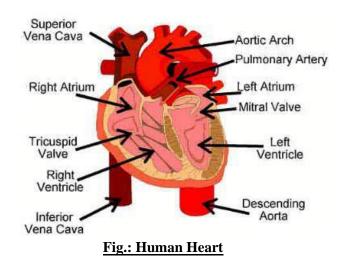
Lesson Aim: understanding and learning the structure of the heart and of its mechanisms, as well as the circulation of blood

Type of lesson: acquiring new information through revised Bloom Taxonomy,2001 **Types of interaction:** teacher-students, student-student.

Name of the School:	Subject: Biology/Life Science
Class: XII	Teaching Unit: Cardiovascular system
Time: 45 minutes	Sub-units:
Date: 12-05-2018	1. Blood & Lymph
Name of the Teacher:	 *2. Human Circulatory System 3. Cardiac Cycle and ECG 4. Double Circulation and Regulation of Cardiac Activity 5. Disorders of Circulatory System
	Today's Lesson: Human Circulatory System

Targeted aims	Objectives
A1- Identifying the main components of the	$\mathbf{O1}$ – be able to identify the main elements of
human organs and their structure and	the circulatory system.
mechanisms	
A2- Describing the main characteristics of	$\mathbf{O2}$ – be able to describe the structure of the
tissues and systems of organs.	heart using accurate and scientific
	terminology.
A3- Explaining some physiological	O3 – be able to explain the functioning
processes of the human body using adequate	mechanisms for the heart, as well as the
scientific terminology.	circulation of blood from and towards the
	heart (the first and second order circulatory
	systems).
	O4 –be able to explain how the electrical
	impulses generated by the
	sinoatrial/sinuatrial/sinus node travel down
	the myocardium and trigger the contraction
	of the heart.

Preparation of Instructional Material through 5E's Model:


Didactic materials: atlas of human anatomy, large illustrations of the structure of the heart, models of a section of a human heart, educational software and standard references books. **Methods:** explanation, conversation, demonstration

I. Engage:

The students will first encounter and identity the instructional task through passive involvement of teacher. Here they make connections between past and present learning experiences, lay the organizational ground work for the activities ahead and stimulate their involvement in the anticipation of these activities. Asking a question, defining a problem, showing a surprising event and acting out a problematic situation are all ways to engage the students and focus them on the instructional tasks.

Students already have an idea about-

- 1) They know the different components of blood.
- 2) They know about the different components of plasma.
- 3) Different types of formed elements are known to them.
- 4) They have the basic idea about the types of blood groups, their antigens and antibodies; donor compatibility; and Rh- grouping.
- 5) They know the step-by-step process of coagulation of blood.
- 6) They have studied the lymph, its characteristics and function.

II. Explore:

In the Exploration stage the students have the opportunity to get directly involved with phenomena and materials. Involving themselves in these activities they develop a grounding of experience with the phenomenon. As they work together in teams, students build a base of common experience which assists them in the process of sharing and communicating. The teacher acts as a facilitator, providing materials and guiding the students' focus. The students' inquiry process drives the instruction during an exploration and they will able to:

- 1) Define open and closed circulatory systems, pericardial membrane.
- 2) Name the different parts of heart, different blood vessels and valves.
- 3) State the location of heart in human body, location of different valves and blood vessels, Sino –atrial node (SAN), Atrio-ventricular node (AVN), Purkinje fibers, Bundle of His.
- 4) Describe the overall structure of the chambers of heart and valves.

III. Explain:

The third stage, Explain, is the point at which the learner begins to put the abstract experience through which she/he has gone /into a communicable form. Language provides motivation for sequencing events into a logical format. Communication occurs between peers, the facilitator, or within the learner himself. Working in groups, learners support each other's understanding as they articulate their observations, ideas, questions and hypotheses. Language provides a tool of communicable labels. These labels, applied to elements of abstract exploration, give the learner a means of sharing these explorations. Explanations from the facilitator can provide names that correspond to historical and standard language, for student findings and events. For example a child, through her exploration, may state they have noticed that a magnet has a tendency to "stick" to a certain metallic object. The facilitator, in her discussion with the child, might at this stage introduce terminology referring to "an attracting force". Introducing labels, after the child has had a direct experience, is far

more meaningful than before that experience. The experiential base she has built offers the student an attachment place for the label. Common language enhances the sharing and communication between facilitator and students. The facilitator can determine levels of understanding and possible misconceptions. Created works such as writing, drawing, video, or tape recordings are communications that provide recorded evidence of the learner's development, progress and growth. Students through explain will able to understand and explain:

- 1) Summarize the function of SAN and AVN.
- 2) Predict why of inter-atrial septum is thinner than inter-ventricular septum.
- 3) Compare the musculature of inter-atrial septum and inter-ventricular septum.
- 4) Explain the rhythmic contractile activity of heart.

IV. Elaborate:

In stage four, Elaborate, the students expand on the concepts they have learned, make connections to other related concepts, and apply their understandings to the world around them. For example, applications to real world events, such as where to plant flowers so that they receive sunlight most of the day, or how to prop up a beach umbrella for shade from the Sun, are both extensions and applications of the concept that light travels in a straight path. These connections often lead to further inquiry and new understandings.

In recent learning design it may elaborate as:

- 1). Prepare a blood smear in a slide, Stain it and watch it under the microscope.
- 2). Identify the different types of blood cells.
- 3). Measure the blood pressure of a person.
- 4). Distinguish between-
 - Tricuspid valve and bicuspid valve
 - SAN and AVN
 - Pulmonary artery and pulmonary vein

V. Evaluate:

Evaluate, the fifth "E", is an on-going diagnostic process that allows the teacher to determine if the learner has attained understanding of concepts and knowledge. Evaluation and assessment can occur at all points along the continuum of the instructional process. Some of the tools that assist in this diagnostic process are: rubrics (quantified and prioritized outcome expectations) determined hand-in-hand with the lesson design, teacher observation structured by checklists, student interviews, portfolios designed with specific purposes, project and problem-based learning products, and embedded assessments. For example, if a teacher perceives clear evidence of misconception, then he/she can revisit the concept to enhance clearer understanding. If the students show profound interest in a branching direction of inquiry, the teacher can consider refocusing the investigation to take advantage of this high level of interest. It may be done as:

- 1). Justify the name pacemaker and pace-setter for SAN and AVN, respectively.
- 2). Justify why arterial lumen is narrower venous lumen.
- 3). Determine the function the function of the valves.
- 4). Prepare a chart/model depicting the structure of human heart. Label it neatly.

Evaluation – Diagnostic Test (multidirectional)

Teacher will prepare a Diagnostic Test to test the knowledge gained by the students.

If they fail to answer the following questions, then remedial teaching will be arranged to reteach the sub-unit.

- 1. What is the covering of heart called?
- 2. Where is bicuspid and tricuspid valve located?
- 3. Which blood vessel carries blood to right atrium?
- 4. Why the SA node is known as the pacemaker? Where is it located?
- 5. Why is inter-atrial septum thinner than inter-ventricular septum?
- 6. Draw a neatly labeled diagram of heart, showing the chambers and different blood vessels connected to the heart.

No.	Aim	Targeted aims	Teacher activity	Students' activity
1	Anticipatory set - Identifying the students' prior knowledge	A1	The teacher asks questions about some of the previous lessons (The Digestion and The Respiration); the teacher helps students make the connection with the new lesson, and also presents its title and objectives.	The students answer the questions and discuss with each other.
2	Direct instruction - Presenting the main components of the lesson	A1 A2 A3	The teacher presents the structure of the circulatory system; using the illustrations and the computer generated models, the students discover the structure of the heart, the types of blood vessels (arteries, capillaries, veins) and the connections formed between these elements. The images illustrating the positioning of the sinoatrial node and the functioning of the heart due to contractions generated by the SA node are analyzed. Finally, the	The students write down the newly acquired information and analyze the images.

VIGYAN SIKSHAK (Vol.-2, June-2018), Reg. No. S/IL/86866 of 2011-2012 All India Science Teachers' Association, W.B., India.

			teacher draws attention to the heart as a unitary mechanism and to the way blood circulates in the body.	
3	Consolidating	A2	The teacher asks questions based on	Students answer
	knowledge	A3	the lesson just taught	the questions.
4	Guided		The teacher asks students to	The students
	practice		turn in their solved hand-outs.	solve the given
				exercises from the
				hand-outs.
5	Assessment		The teacher asks the students to design	The students
			a schematic representation of the	check their
			connection between the 3 systems	solutions/answers
			which make nutrition possible.	and correct any
				mistakes.

Analysis of Learners activity and outcomes:

Unit	Sub-Unit		Sub-Segment	Clarification
Body	Human	1.	Covering and Chambers of Heart	Pericardial membrane, Pericardial fluid, 4 chambers of heart: upper left and right
Fluids and	Circulatory			Atria, lower left and right Ventricles.
Circulation	System	2.	Valves and Vessels of Heart	3 types of valves found in heart. Semilunar valve, in between Right
				Ventricle and Pulmonary artery; Left Ventricle and Aorta.
				Bicuspid valve between left atrium and ventricle, and tricuspid valve between
				right atrium and ventricle.
				Superior and Inferior Vena cava,
				Pulmonary vein, Pulmonary artery, Aorta.
		3.	Types of nodes of heart and their functions	Sino-atrial node (SAN) - Pacemaker. Atrial-ventricular node (AVN) - Pace- setter
		4.	Rhythmic contractile activity of heart	Action potentials involving Purkinje fibers and Bundle of His

Teaching Strategies for active learning through Constructivist approach:

VIGYAN SIKSHAK (Vol.-2, June-2018), Reg. No. S/IL/86866 of 2011-2012 All India Science Teachers' Association, W.B., India.

page no. 56-67

Unit	Sub-Unit	Sub-Segment	Teaching strategies	Teacher talk	Student talk
		1. Covering	Lecture cum	Q1: Where do	A1: Chest, or
		and	demonstration	you think is	if answered
		Chambers	method;	the heart	wrong,
		of Heart	3D model of the heart	located in the	correct them
			to be used and four	body?	A2: If cannot
			chambers to be	Q2: Which	answer, they
			pointed out.	side of the	are told.
			The four chambers of	chest?	A3: Yes.
			heart are to be taught	Q3: Like	A4: Students
			using the model and	pleural	answer that
			charts. The location	membrane in	walls of
			of the chambers to be	lungs	ventricles are
			pointed out.	(previous	thicker since
			Importance of	knowledge),	they have
			pericardial membrane	do you think	more volume
			to be taught.	heart is	of blood to
			Structure of and	covered by a	pump
Body	Human		functions of ventricles	similar	throughout
Fluids and	Circulatory		to be taught.	membrane?	the whole
Circulation	System			Q4: Why do	body.
Circulation	System			you think	
			Structure of	inter	
			heart drawn,	ventricular	
			Important	septa is	
			keywords written	thicker than	
				inter atrial	
			Blackboard	septa.	
			The Human Heart		
			Vana Caus		
			Vena Cava		
			Left Atrium		
			Right Left		
			Atrium Ventricle		
			Right		
			Ventricle Oxygenated Blood		
			De-Oxygenated Blood		

VIGYAN SIKSHAK (Vol.-2, June-2018), Reg. No. S/IL/86866 of 2011-2012 All India Science Teachers' Association, W.B., India.

page no. 56-67

2.	Valves	Interactive cum	Q1: How	A1: from the
	and	demonstration	does the heart	chart, they are
	Vessels of	method;	gets filled	able to point
	Heart	Diagrams to be drawn	with blood?	to the various
		on BB to explain the		blood vessels.
		features and location		
		of the 3 types of		
		valves. Chart to be		
		used to point out		
		different blood		
		vessels attached to the		
		heart. Functions and		
		locations of each of		
		the blood vessel to be		
		explained.		
3.	Types of	Lecture method.		
	nodes of	Location and names		
	heart and their functions	of two nodes to be		
		explained.		
4.	Rhythmic	Lecture method.		
	contractile	Action potential of		
	activity of heart	70-75/min to maintain		
		beating of the heart.		
		Flow of action		
		potential from		
		Purkinje fibers to		
		bundle of His and		
		throughout the		
		cardiac muscle.		

Developing and selecting Learning materials:

- Books used: NCERT Class XI & XI Biology book, Modern Biology Textbook.
- Chalk, Duster, Ruler/Pointer.
- Charts and 3D models depicting the structured of 4-chambered human heart.
- Laptop for showing them video clips of how blood circulation takes place in the heart.
- Simulation practical experienced material which enhance virtual practical experience.

Benefits of constructivist approach in Science classroom:

"Imagination is more important than knowledge, knowledge is limited. Imagination encircles the world." – Albert Einstein.

In a democratic environment the learners are activity involved and from this their imagination power increased. Education works best when it concentrates on thinking and understanding, rather than rote memorization. Constructivism concentrates on learning how to think and understand. This learning is transferable. This situation gives students ownership (stake holder) what they learn, since learning is based on students' questions and explorations. Students in constructivist classrooms learn to question things and to apply their natural curiosity to the world. Constructivist promotes social and communication skills by creating a classroom environment that emphasizes collaboration and exchange of ideas.

Each topic cannot be taught through constructivist approach. But if resources are available or teacher can procure on their own with ease, then constructivist approach must be used as it develops high level of understanding. In a country like India where classrooms are overcrowded by students, it is generally considered that constructivist teaching approach is so difficult to implicate in classroom. Because, constructivist pedagogy takes more time as compared to other such traditions teaching method. But in the 20th century, revolutionary changes were brought about in the concept and theories of science and other subjects conventional or traditional methods are not sufficient to acquire this knowledge for the school's students. So, constructivist approach may be difficult to implicate in classroom but, it achievable.

References:

Ahmed, J. (2009). Teaching of biology sciences. New Delhi, PHI Learning private Limited.

- Allus W. M. & Shore, M. B. (2008), *Inquiry In Education, vol. 1*, America, Lawrence Erlbaum Association.
- Anderson, L. W.; Krathwohl, David R., eds. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. Allyn and Bacon. ISBN 978-0-8013-1903-7
 - Black, A., & Ammon, P. (1992). A developmental-constructivist approach to teacher education. Journal of Teacher Education
- Fosnot, C. T. (1989). *Enquiring teachers, enquiring learners: A constructivist approach to teaching.* New York: Teachers college Press.
- Hein, G. E. (1991). Constructivist Learning Theory: The Museum and the Needs of People. Retrieved from http://www.exploratorium.edu/ifi/resources/research/constructivistlearning.html
 Kelly, G.A.(1991). The Psychology of personal Constructs: vol. 1, London, Routledge.

National Curriculum Framework (2005). New Delhi, NCERT.

Philips, D.(Ed.), (2000), Constructivism in education : Chicago: University of Chicago Press.

- Piaget. J.(1977). *The Development of Thought: Equilibration of cognitive structures*. New York: The Viking Press.
- Richardson, V.(Ed.), (1997). Constructivist teacher education: Building a world of new understandings. London: Falmer.
- Sharma, R.C. (2010). *Modern Science of Teaching*. New Delhi, Dhanpat Rai Publication company.
- Vygotsky, L. S.(1978). *Mind in society: The Development of Higher Psychological Processes*. Cambridge: Harvard University Press, retrieved from https://books.google.co.in/books/about/Mind_in_Society.html?id=RxjjUefze_oC&redir_esc= y on 10-8-15 on 9th July,2014
 - Wilson, L. O. (2016). The Second Principle: Anderson and Krathwohl Bloom's Taxonomy Revised. available at https://thesecondprinciple.com/wpcontent/uploads/2018/02/blooms-taxonomy-revised.pdf

VIGYAN SIKSHAK (Vol.-2, June-2018), Reg. No. S/IL/86866 of 2011-2012 All India Science Teachers' Association, W.B., India, page no. 56-67